科技

人工智能首次实现多重量子关联的同时分类

字号+ 作者:- 来源:- 2019-11-19 14:39:44

  人工智能首次实现 多重量子关联的同时分类  情报所  记者近日从中国科学技术大学获悉,该校郭光灿院士团队成员李传锋、许金时等与国内同行合作,将机器学习技术应用于研究量子力学基础问题,首次实验实现了基于机器学习算法的多重非经典关联的同时分类。该成果日前发...

  人工智能首次实现 多重量子关联的同时分类

  情报所

  记者近日从中国科学技术大学获悉,该校郭光灿院士团队成员李传锋、许金时等与国内同行合作,将机器学习技术应用于研究量子力学基础问题,首次实验实现了基于机器学习算法的多重非经典关联的同时分类。该成果日前发表在国际物理学权威期刊《物理评论快报》上。

  爱因斯坦、波多尔斯基和罗森等人质疑量子力学完备性,后来被称为EPR佯谬。随着对EPR佯谬的深入研究,人们逐渐理解爱因斯坦所指的“幽灵般的超距作用”来源于量子世界的非定域关联,并且它还可以进一步细分为量子纠缠、量子导引和贝尔非定域性等层次。各种不同的量子关联已经成为量子信息领域的关键资源,并扮演着重要的角色。

  然而,刻画任意给定的一个量子态中的非经典关联仍存在巨大挑战。首先是其计算极其复杂。其次是实验上数据采集时间随着系统粒子增加呈指数增加。最后,人们并不清楚是否存在一个统一的框架,可以通过相同的测量或可观测量的集合,实现所有这些非经典关联的同时区分。

  机器学习可通过一系列的训练数据,得到一个可输出预测结果的函数或模型。通过巧妙的实验设计,在光学系统中制备出一簇参数可调的2比特量子态。通过只输入量子态的部分信息,利用神经网络、支持向量机以及决策树等机器学习模型对455个量子态的非经典关联属性进行学习,成功地实现了多重非经典关联分类器。

  实验结果表明,基于机器学习算法的分类器能以大于90%的高匹配度同时识别量子纠缠、量子导引和贝尔非定域性等不同的量子关联属性,且无论在资源消耗还是时间复杂度上,都远小于传统判据所依赖的量子态层析方法。

  该成果推动了人工智能与量子信息技术的深度交叉。未来,机器学习作为一种有效的分析工具,将有助于解决更多量子科学难题。(记者吴长锋)

【编辑:陈海峰】

转载请注明出处。

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

 
相关文章
  • 特斯拉积极布局“场景化”充电,解决用户充电...

  • 2020医药发展高峰论坛南昌举行 “医全通...

  • 打牢健康中国根基 校园食品安全科普在行动

  • 平台型公司发力 百度培养百万AI人才稳就业

  • 首款国产超小体积5G通信模组在长虹下线

  • 助绿色发展跑出“加速度” 浙江金控“1+3...

  • 农业农村部与阿里巴巴战略合作 依托钉钉共建...

  • 首汽约车率先接入北京健康宝精准防控开启线上...